Skip to main content
Log in

A fast converging integrated implementation of zero-knowledge beamforming algorithm for phased-array receivers

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a new implementation of adaptive beamforming algorithm that can be fully implemented on chip. It does not require the knowledge of the incoming signal direction or phase shifter characteristics. Besides, it eliminates the need for the ADC to convert the analog output signal to digital values for the microprocessor and the DAC to apply the calculated values to the control voltages of the analog phase shifters. Thus, it exhibits better convergence speed. In addition, the need for the complex and power-hungry processor is eliminated. Therefore, this implementation consumes less power. Analytical equations and constraints on system design parameters are derived, and the circuit implementation of the proposed method for adaptive beamforming algorithm is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Garg, R., & Natarajan, A. S. (2017). A 28-GHz low-power phased-array receiver front-end with 360° RTPS phase shift range. IEEE Transactions on Microwave Theory and Techniques, 65(11), 4703–4714.

    Article  Google Scholar 

  2. Alok, S., Aikio, J. P., Shaheen, R. A., Akbar, R., Rahkonen, T., & Pärssinen, A. (2018). A four channel phased array transmitter using an active RF phase shifter for 5G wireless systems. Analog Integrated Circuits and Signal Processing, 98, 1–10.

    Google Scholar 

  3. Banbury, D.R., Fayyaz, N., Safavi-Naeini, S., Nikneshan, S. (2004). A CMOS 5.5/2.4 GHz dual-band smart-antenna transceiver with a novel RF dual-band phase shifter for WLAN 802.11a/b/g. In 2004 IEEE radio frequency integrated circuits (RFIC) systems. digest of papers (pp. 157–160).

  4. Godara, L. C. (1997). Application of antenna arrays to mobile communications. II. Beam-forming and direction-of-arrival considerations. Proceedings of the IEEE, 85(8), 1195–1245.

    Article  Google Scholar 

  5. Carlson, B. D. (1988). Covariance matrix estimation errors and diagonal loading in adaptive arrays. IEEE Transactions on Aerospace and Electronic Systems, 24(4), 397–401.

    Article  Google Scholar 

  6. Wahlberg, B. G., Mareels, I. M. Y., & Webster, I. (1991). Experimental and theoretical comparison of some algorithms for beamforming in single receiver adaptive arrays. IEEE Transactions on Antennas and Propagation, 39(1), 21–28.

    Article  Google Scholar 

  7. Qin, L., Wu, M., & Dong, Z. (2017). Robust adaptive beamforming using multi-snapshot direct data domain approach. AEU-International Journal of Electronics and Communications, 75, 124–129.

    Article  Google Scholar 

  8. Monzingo, R. A., Haupt, R. L., & Miller, T. W. (2011). Introduction to adaptive arrays. Raleigh: SciTech Publishing.

    Book  Google Scholar 

  9. Kawitkar, R.S., Wakde, D.G. (2005). Smart antenna array analysis using LMS algorithm. In IEEE international symposium on microwave, antenna, propagation and EMC technologies for wireless communications (pp. 370–374).

  10. Godara, L., & Cantoni, A. (1986). Analysis of constrained LMS algorithm with application to adaptive beamforming using perturbation sequences. IEEE Transactions on Antennas and Propagation, 34(3), 368–379.

    Article  Google Scholar 

  11. Fakharzadeh, M., Jamali, S. H., Mousavi, P., & Safavi-Naeini, S. (2009). Fast beamforming for mobile satellite receiver phased arrays: Theory and experiment. IEEE Transactions on Antennas and Propagation, 57(6), 1645–1654.

    Article  Google Scholar 

  12. Wu, L., Li, A., & Luong, H. C. (2013). A 4-Path 42.8-to-49.5 GHz LO generation with automatic phase tuning for 60 GHz phased-array receivers. IEEE Journal of Solid-State Circuits, 48(10), 2309–2322.

    Article  Google Scholar 

  13. Fakharzadeh, M., Mousavi, P., Safavi-Naeini, S., & Jamali, S. H. (2008). The effects of imbalanced phase shifters loss on phased array gain. IEEE Antennas and Wireless Propagation Letters, 7, 192–196.

    Article  Google Scholar 

  14. Zhou, Y., & Chia, M. Y. (2008). A low-power ultra-wideband CMOS true RMS power detector. IEEE Transactions on Microwave Theory and Techniques, 56(5), 1052–1058.

    Article  Google Scholar 

  15. Sakphrom, S., Thanachayanont, A. (2012). A low-power CMOS RF power detector. In 2012 19th IEEE international conference on electronics, circuits, and systems (ICECS 2012) (pp. 177–180).

  16. Lee, J., & Wang, H. (2009). Study of subharmonically injection-locked PLLs. IEEE Journal of Solid-State Circuits, 44(5), 1539–1553.

    Article  Google Scholar 

  17. Razavi, B., Lee, K. F., & Yan, R. H. (1995). Design of high-speed, low-power frequency dividers and phase-locked loops in deep submicron CMOS. IEEE Journal of Solid-State Circuits, 30(2), 101–109.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mojtaba Atarodi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadikia, A., Atarodi, S.M. A fast converging integrated implementation of zero-knowledge beamforming algorithm for phased-array receivers. Analog Integr Circ Sig Process 100, 11–22 (2019). https://doi.org/10.1007/s10470-019-01441-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-019-01441-x

Keywords

Navigation